A new Eriophyid species (Acari Eriophyoidea) on Salsola spp. (Centrospermae Chenopodiaceae) and a new report for Aceria tamaricis (Trotter)

ABSTRACT

A new eriophyoid species is described and illustrated. Aceria salsolae n. sp. was observed on Salsola kali L. and S. australis Brown (Centrospermae Chenopodiaceae) in Turkey, Greece and Uzbekistan. Although the mite does not form galls, the infested plants were stunted, deformed, less spiny, and their vigor was impacted. Host specificity tests, carried out in Turkey, indicate that this species is a promising candidate for the biological control of S. australis in the U.S.A. Aceria tamaricis (Trotter) has been also found on Tamarix smirnensis Bunge in Turkey.

Key words: mites, Eriophyidae, weeds, biological control.

INTRODUCTION

The ability of eriophyid mites to reduce or to stop the growth and the reproduction of plants suggests research on the identification and selection of promising candidates for the biological control of the weeds (Cromroy, 1978; Boczek, 1995; Rosenthal, 1996; Nuzzaci & de Lillo, 1996). We found growth deformations caused by eriophyids on Salsola spp. and Tamarix smirnensis Bunge. No eriophyoids have been found on Salsola spp. until now. The importance of Tamarix spp. as weeds in U.S.A was noted in a previous paper (de Lillo & Sobhian, 1994). Salsola australis is of Eurasian origin, and troublesome in pastures, recreational areas, road sides, etc. mainly in dry areas in the U.S.A.

* Institute of Agricultural Entomology, Faculty of Agriculture, University of Bari, v. Amendola, 165/A, Bari, Italy.
** USDA-ARS, European Biological Control Laboratory - BP 4168, Agropolis II, 34092 Montpellier Cedex 5, France.
° This research was partially supported by M.U.R.S.T. 40% grant and by USDA-ARS grants. The senior author provided mainly the morphological description and illustration, the junior author provided to the field observations; both cooperated in writing the manuscript.
MATERIALS AND METHODS

Dried and preserved (in 70% ethanol solution) eriophyids were prepared using the usual methods applied for light microscopy (JEPPSON et al., 1975) and scanning electron observations (NUZZACI et al., 1991). Lindquist’s terminology (1996) of the morphological details has been adopted. Measurements of mites were made according to Amrine and Manson (1996). The classification of the genus was made according to Amrine (1996). Type materials are deposited at the Institute of Agricultural Entomology, Faculty of Agriculture, University of Bari, Italy.

DRAWING ABBREVIATIONS

AP1, internal female genitalia; CS, lateral view of a caudal region; DA, dorsal view of an anterior region; E, empodium; ES, lateral view of tergite-stermites or annuli; GF, coxal and genital region of a female; L, foreleg; SA, lateral view of anterior region.

Aceria salsolae n. sp.

Female - Body cilindrical, colour yellowish, 172 (140-205 range of 10 specimens) µm long, 41 (39-46) µm wide and 41 (35-53) µm thick. Gnathosoma 23 (21-26) µm long projecting obliquely, chelicerae 17 (14-20) µm long, seta d (=subapical, antapical) 1 7 µm long. Prodorsal shield 27 (25-29) µm long, 30 (28-33) µm wide, semicircular in anterior shape with short and rounded anteriormedian lobe over gnathosoma base; shield with median line on rear 1/3, complete admedian line, complete submedian line and granules on each side; median and admedian lines are composed of very close dashes, submedian lines composed of well separated granules. Sc (=posterior dorsal) tubercles set on rear shield margin 20 (19-21) µm apart with sc (=posterior dorsal) setae 42 (32-52) µm long, directed to the rear. Foreleg 36 (31-40) µm long, tibia 8 µm long, tarsus 7 µm long, w (solenidion) 6 µm long, unknobbed, empodium 7 µm long, 5-rayed simple. Hindleg 31 (30-33) µm long, tibia 7 µm long, tarsus 7 µm long, w 6 µm long, unknobbed, empodium 6 µm long, 5-rayed simple. Coxae with ornamentation of coarse granules; 1b (=first forecoxal) setae 10 (8-11) µm long, 1b tubercles 10 µm apart, 1a (=second forecoxal) setae 30 (25-35) µm long, 1a tubercles 7 µm apart, 2a (=hindcoxal) setae 41 (32-50) µm long, 2a tubercles 21 µm apart.

1 The term of the structures usually used until now are reported after the Lindquist’s term and between brackets.
Fig. 1 - Semischematic drawings of *Aceria salsolae* n. sp.
Prosternal apodeme (=sternal line) 5 µm long.
Opisthosoma with 74 (70-79) annuli (=rings). Microtubercles near rear margins of annuli, rounded.
c2 (=lateral) setae 48 (40-60) µm long on annulus 12 (11-13); d (=1st ventral) setae 58 (48-70) µm long on annulus 6 (24-27); e (=2nd ventral) setae 44

Fig. 2 - Scanning electron micrographs of *Aceria salsolae* n. sp.: A) subdorsal view; B) detail of the prodorsal shield; C) detail of the microtubercles. Scale bar = 10 µm.
Fig. 3 - A) *Salsola australis* infested with *A. salsolae* (late in season - October 1995); B) *S. australis* infested with *A. salsolae* (early in season), one healthy branch on the left, four infested branches on the right of the photo (May 1996).
(33-50) µm long on annulus 44 (40-46); f (=3rd ventral) setae 40 (30-60) µm long on annulus 67 (62-72). Last 5 (4-6) annuli with elongated and linear tubercles; h2 (=caudal) setae 70 (64-86) µm long, h1 (=accessory) setae 5 µm long. Genitalia 11 (10-13) µm long, 21 (20-22) µm wide. Genital coverflap with 10 longitudinal striae; 3a (=genital) setae 14 (12-15) µm apart, 18 (16-20) µm long.

Male - 145 µm long, 34 µm wide, prodorsal shield 22 µm long; sc tubercles 17 µm apart, sc setae 31 µm long; opisthosoma with about 68 annuli. Genitalia 17 µm wide.

Nymph II - 148 µm long; prodorsal shield 22 µm long; sc tubercles 14 µm apart, sc setae 23 µm long; opisthosoma with about 58 annuli; genital setae 6 µm apart, 7 µm long on annulus 8.

Host plant - *Salsola kali* L. (Fam. Chenopodiaceae).

Type materials - Holotype 1 slide containing 9 females, 1 male and 2 nymphs; Paratypes: 3 slides with many females, males and nymphs collected at the same date and locality.

Type locality - Yakasinek, 12 Km east of Cay, Turkey. September 12, 1995, R. Sobhian.

Other material - envelope of dry stems and leaves and mummified mites from which the above slides were made; vial of stems and leaves with mites preserved in 70% ethanol.

Other locality - The mite was first found on August 11, 1995, 12 km east of Cay, Turkey. It was also found 20 km east of Isparta (at over 1000 m elevation) and 25-30 km north west of Sivrihisar, along the road to Afyon, Turkey. It was very common on *Salsola australis* Brown near Kokan (Uzbekistan), 47 km west of Tashkent, and in many other sites in Uzbekistan. J. Kashefi collected it on *S. kali* on October 2, 1995 at Dimitra on road Amphipoli to Serres (Makedonias), Greece.

Other host - *S. australis* Brown.

Remarks - Nine *Aceria* spp. have been found on plants belonging to the family Chenopodiaceae (Amrine & Stasny, 1994) but any of them is morphologically similar to *A. salsolae* and any of them causes similar injuries to the host plants.

Relation to the host - Mites do not make galls. The infested plants remain stunted and less spiny (fig. 3). The mites were in large numbers among the leaflets, especially at their bases. The seed production is dramatically reduced on infested plants.

As the infested plants are less spiny, cattle might prefer them as forage more than the uninfested plants.

In a host specificity test carried out in Antalya, Turkey, the mite readily
attacked *S. australis* from California and *S. australis* from Turkey (control), while none of the other six plants including sugar beet, table beet, and spinach, were susceptible hosts (Sobhian, unpublished data). The results of the host specificity test and the fact that the mite has been found on *S. australis* indicate that it is a promising candidate for the biological control of *S. australis* in the U.S.A.

Aceria tamaricis (Trotter)

Large populations of *A. tamaricis* were found on *T. smirnensis* in Efes, near Izmir, Turkey, 10 September, 1995, and they were associated to galls similar to those caused on *T. gallica* L. in France. This is the first report of an eriophyid mites on *T. smirnensis*.

AKNOWLEDGEMENTS

We wish to thank Dr. J. Kashefi, USDA-ARS, European Biological Control Laboratory, Thessaloniki, Greece, who collected samples of *Salsola kali* L. from Greece, Prof. J.W. Amrine Jr., West Virginia University, U.S.A. for confirming the new species, Prof. G. Nuzzaci, Institute of Agricultural Entomology, Bari, Italy, and Dr. L. Knutson, USDA-ARS, European Biological Control Laboratory, Montpellier, France for the critical review of the manuscript.

REFERENCES

