Editor-in-chief
FRANCESCO PORCELLI

Guest Editor
M. BORA KAYDAN General and Applied Entomology

Technical Board
GIORGIO NUZZACI Editorial procedure supervisor
EUSTACHIO TARASCO Edition control
FRANCA TODISCO Desktop publisher; Editorial procedure advisor
ROBERTA ROBERTO Editorial procedure advisor
LAURA DIANA Editorial procedure advisor
VALENTINA RUSSO Editorial procedure advisor
NICO DE SANTIS Lawyer Protection of copyright and privacy

Topic or Country Editors
ROCCO ADDANTE Beekeeping, IPM for stone fruits and grapevine
ENRICO DE LILLO Acarology
EUSTACHIO TARASCO Insect pathology, urban and forest entomology, faunistic biodiversity and management
ANTONELLA DI PALMA Acari ultrastructure, comparative anatomy and functional morphology, Mesostigmata & Heterostigmata Systematic
SALVATORE GERMINARA Insect semiochemicals, Extraction methods, Chemical analyses (GC, GC-MS, GC-EAD), Electrophysiology, Olfactometer bioassays, Stored-product insects, Integrated Pest Management (IPM)
MARIA SCRASCIA Bacteriology; Bacteria-Insects associations; Uncultivable Bacteria
CARLO PAZZANI Microbiology of Prokaryotes; Mobile Genetic Elements; Bacterial Communities
AGATINO RUSSO Faunistic and systematic of scale insects. Monitoring and control of stored food pests. Applications of biological and integrated control in agriculture and food industries
GAETANA MAZZEO Faunistic and systematic of Homoptera Coccoidea. Honeybee, solitary bees and biodiversity in natural and anthropic ecosystems. Insect pests of ornamental plants
SANTI LONGO General and Applied Entomology
ROBERTA ROBERTO Genetist, molecular biologist

Department of Soil, Plant and Food Sciences - UNIBA Aldo Moro DiSSPA - Entomology and Zoology Section, Via Amendola, 165/A - 70126 BARI - ITALY
http://www.uniba.it/ricerca/dipartimenti/disssa
Tel. +39/0805442874 - +39/0805442880
E-mail: entomoli@uniba.it
Authorization of the Court of Bari n. 306, 19 April 1966
Cryo-SEM observations and imaging of minute lesser sclerotized insects

ABSTRACT

The study of minute cuticular details of small delicate insects is possible by slide mounting of the entire exoskeleton or part of it. This technique requires whole insect body clearing or tissue bleaching and washing. Lesser sclerotized insect body greatly suffers for such treatments and loses its natural body shape by shrinkage or by flattening, consequently. The aim of this study is to suggest an effective, fast and cheap technique to image less sclerotized insects that are prone to shrink or to wrinkle their bodies because of desiccation. Actual availability of desktop Cryo-SEM (Hitachi TM 3000 series) suggested us to experiment the opportunity to preserve natural body shape of the minute, delicate and lesser sclerotized insects in their living attitude. The technique bases on freezing the specimen, either living or previously EtOH-preserved but moved in water for the preparation, in the water down to -40°C on the SEM Cryo-stage and setting it for observation in SEM vacuum chamber. Once in the vacuum a proper T°C increase at about -28/-22°C allows external ice sublimation and exposes the frozen insect to direct SEM imaging. The technique appears promising because of the overall quality of results, the resolving power, the opportunity to measure the specimens. In fact, delicate specimens as *Phylloxera ilicis* Grassi (Hemiptera: Phylloxeridae, a representative of *Phylloxera quercus* Boyer de Fonscolombe group), the Italian grape mealybugs *Planococcus ficus* (Signoret) (Hemiptera: Pseudococcidae) and *Drosophila suzukii* (Matsumura) (Diptera: Drosophilidae) maggots that are all usually ruined by desiccation during direct SEM observation, beautifully retain their natural body shape by this technique allowing the study and imaging of external morphology. As a further advantage, there is no need to critical point drying or metal coating, and the same sample can be submitted to conventional slide mounting later, after being studied by Cryo-SEM. Finally, we present a table of the running time/cost per observation of the proposed technique.

Keywords: electron microscopy, anatomy, gross & fine morphology.

We observed an adult female *Planococcus ficus* (Nedzelskii) by Cryo-SEM: from the dorsal view; from the ventral view; a mouthpart and first pair of legs; a left antenna; a detail of the posterior end of the body from dorsum; the abdominal circulus; the tip of the rostrum and last antennomere. The natural shape of the sample is well preserved, the mealy wax, the different grey shades on the antennomeres and rostrum and the antennomere sensilla are clearly visible.
CRYO-SEM METHOD

We use a SEM Peltier stage (Coolstage) composed of the Peltier cooling group and the stub holder on which the sample will be placed. The first step is to put a drop of deionized water on the stub, then to dip the adult female of Planococcus ficus into the water drop. The excess of water is taken off by a piece of blotting paper. The sample in deionized water is ready to be frozen. The frozen sample, with part of the ventral abdominal sclerites out of the ice, is ready to be observed. The samples after observation are willing to be restored in 75% EtOH for future observation by light microscopy or further different techniques.

We also took a series of pictures of *Phylloxera ilicis* (Grassi) juvenile feeding on an inferior *Quercus ilex* leaf surface, at several laps in a total of observation time of 75 minutes. The gross body shape, the morphology, the structure of the sample and also the dorsal processes minute details are well preserved and remains coherent during the long observation. The leaf trichomes are clearly visible too.

We report the observation of the anterior part of the body of a *Drosophila suzukii* (Matsumura) maggot and the progressive sublimation of the ice embedding the adult female Planococcus ficus (Nedzelskii). The ice appears grey and the alloy stub, bright/white. The part of the ventral abdominal sclerites rests out of the ice eventually.

Running cost estimation on a four-year base experience. The mean SEM use is one hour per working day.

Cost per year, four year base comprehend planned annual and bi-annual plus breakdown maintenance:

<table>
<thead>
<tr>
<th>Year</th>
<th>Gross cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>36,573,00 €</td>
</tr>
<tr>
<td>2014</td>
<td>37,598,53 €</td>
</tr>
<tr>
<td>2015</td>
<td>36,573,00 €</td>
</tr>
<tr>
<td>2016</td>
<td>41,269,50 €</td>
</tr>
<tr>
<td>Four years total</td>
<td>152,014,03 €</td>
</tr>
<tr>
<td>Total/year</td>
<td>38,003,51 €</td>
</tr>
<tr>
<td>Cost per working hour</td>
<td>25,34 €</td>
</tr>
<tr>
<td>disposable/obs.</td>
<td>10,00 €</td>
</tr>
<tr>
<td>cost/minute</td>
<td>0,42 €</td>
</tr>
</tbody>
</table>

Cost per observation

<table>
<thead>
<tr>
<th>Subject/h:min/Pictures</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan. ficus/2:30/8</td>
<td>73,34 €</td>
</tr>
<tr>
<td>Phll. Ilicis/1:15/5</td>
<td>41,67 €</td>
</tr>
<tr>
<td>Ice Sub. /2:00/5</td>
<td>60,67 €</td>
</tr>
<tr>
<td>Dros. suzukii/1:00/1</td>
<td>35,34 €</td>
</tr>
</tbody>
</table>
Cryo-SEM observations and imaging of minute lesser sclerotized insects

R. Robert et al. *Y. Russel, L. Dangel, G. Pelizzi, E. Parsons*

ABSTRACT: The cryo-SEM observations of minute lesser sclerotized insects reveal a unique morphology, allowing for the detailed analysis of their structural and functional aspects. During sample preparation, it is crucial to freeze the insects quickly and evenly to preserve their morphology. This process involves cryo-fixation, cryoembedding, and cryo-sectioning, ensuring that the sample remains in its natural state. The images obtained from cryo-SEM provide valuable insights into the cellular and tissue structures, complementing traditional histological methods. This technique is particularly useful for studying small insects, where the high resolution and low radiation damage of cryo-SEM offer significant advantages. The cryo-SEM observations reveal intricate details of the insect's morphology, providing a deeper understanding of their biological function and evolution. These findings could have implications in various fields, including entomology, material science, and medical research, where understanding the structural properties of small insects is crucial.