Occurrence of entomopathogenic fungi in soils in Southern Italy*

ABSTRACT

The natural occurrence of entomopathogenic fungi was investigated in Southern Italian soils using larvae of *Galleria mellonella* L. (Lepidoptera: Galleriidae) as “bait insect”. Since September (1996) to March (1997) 188 samples of soil were collected from different habitats (woodland, orchard, field, seacoast, grassland, uncultivated land and salt pan). Parasitic fungi were obtained from 14.9% of the soil samples. There were 3 entomopathogenic species: *Metarhizium anisopliae* (Metchnikoff) Sorokin, *Paecilomyces lilacinus* (Thom) Samson and *Beauveria bassiana* (Balsamo) Vuillemin. The most common fungal pathogen was *B. bassiana*. Both *M. anisopliae* and *P. lilacinus* were isolated only once. The occurrence of *B. bassiana* seems to be affected by the soil type and the habitat.

Key words: survey, *Beauveria bassiana*, *Metarhizium anisopliae*, *Paecilomyces lilacinus*.

INTRODUCTION

Entomopathogenic fungi, mainly Hyphomycetes and Ascomycetes, were regularly found infecting insects in soil. The Hyphomycete, *Metarhizium anisopliae* (Metchnikoff) Sorokin, is probably the best known of these species. However, practically nothing is known about the occurrence and importance of these pathogens in soils in Southern Europe. Especially, no data are available as regards to the soil inhabiting entomopathogenic fungi in Southern Italy.

In the framework of a research program originally undertaken, at the University of Bari, on soil-inhabiting entomopathogenic nematodes (TARASCO & TRIGGIANI, 1997) an extensive survey in five regions in Southern Italy was carried out. Soil samples were taken from various locations and nematodes

1 Istituto di Entomologia Agraria, Università degli Studi, Via Amendola, 165/A - 70126 BARI (Italy). 2 Unité de Mycologie; 3 Unité d’Ecologie des Systèmes vectoriels, Institut Pasteur, 25, rue du Dr. Roux, 75724 PARIS CEDEX 15 (France). Triggiani and Tarasco planned the research, De Bievre and Papierok identified the fungi, Poliseno isolated the fungi. Papierok and Tarasco collaborated in the elaboration and in the layout of the paper.

* Supported by Murst 60%
were isolated using *Galleria mellonella* L. (Lepidoptera: Galleriidae) as “bait insect”. This method also allowed us to isolate entomopathogenic fungi. The aim of this paper is to present the first corresponding results.

MATERIAL AND METHODS

A total of 188 soil samples taken during September 1996 - March 1997 from 63 sites in Southern Italy (in the vicinity of Apulia, Molise, Basilicata, Campania and Calabria Regions) were tested for the presence of insect pathogenic fungi (fig. 1).

In order to sample ecologically different habitats such as fields, orchards, sea coasts, salt pans, uncultivated lands, woodlands and grasslands, random soil samples were taken.

Final instars of *G. mellonella* were used as bait insects for the surveys. Approximately 2 kg soil were collected for each sample by pooling 3-4 sub-samples taken at depths of 10-20 cm from an area of about 50 m².

Isolation of entomopathogenic fungi was attempted using the “*Galleria* bait method”, initially developed by Bedding and Akhurst (1975) for trapping insect parasitic nematodes and later adapted by Zimmermann (1986), slightly modified. The procedure was as follows: the soil was transported in sterile plastic bags to the laboratory and six *G. mellonella* larvae were placed in a
long-handled tea infuser in the middle of each sample. Afterwards the samples were moistened and incubated at 25°C for 7-10 days; if the larvae did not die after 2 weeks, the sample was tested again with *G. mellonella* larvae. Infected wax moth larvae from each sample were surface-sterilized by keeping them for 3 min. in 1% sodium hypochlorite and rinsing them in distilled water. After this, the larvae were incubated at 25°C in Petri dishes with moistened filter paper till the presence of pathogens could be assessed.

When sporulating structures appeared on the cadaver, attempts to isolate the fungus were made by transferring spores to potato dextrose agar in Petri dishes. Inoculated Petri dishes were then checked every day and the tubes with pure culture were subcultured in potato dextrose agar medium. Cultures were then stored at 8°C.

For each sampling location, texture, pH, content of organic matter and organic carbon of the soil were recorded. The % organic carbon and % organic content of soil were tested by the Walkley and Black method. The soil structure was determined by texture. The soils with *Beauveria bassiana* (Balsamo) Vuillemin were tested for % NaCl.

RESULTS

Fungi were isolated from 28 soil samples (14.9% occurrence), on a total of 188 (fig. 2); more than 10 species were isolated belonging to 7 genera (tab. 1).

Fig. 2 - Frequency of occurrence of fungal species isolated from Southern Italian soils.
Tab. 1 - Entomopathogenic fungi isolated from various Southern Italian soils: characteristics of the sampled places, time, characteristics of the soil tested.

<table>
<thead>
<tr>
<th>Fungi</th>
<th>Locality</th>
<th>Altitude (m a.s.l.)</th>
<th>Time</th>
<th>Habitat</th>
<th>Soil texture</th>
<th>pH</th>
<th>Org. cont.%</th>
<th>Org. carb.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beauveria bassiana</td>
<td>Gravina (BA)</td>
<td>350</td>
<td>September 1996</td>
<td>Uncultivated land</td>
<td>Clay</td>
<td>8.0</td>
<td>2.83</td>
<td>1.64</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Rapolla (PZ)</td>
<td>540</td>
<td>October 1996</td>
<td>Orchard</td>
<td>Loamy sand</td>
<td>7.6</td>
<td>2.01</td>
<td>1.17</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Mariotto (BA)</td>
<td>120</td>
<td>September 1996</td>
<td>Orchard</td>
<td>Silt loam</td>
<td>7.7</td>
<td>3.46</td>
<td>1.43</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Turi (BA)</td>
<td>270</td>
<td>October 1996</td>
<td>Uncultivated land</td>
<td>Loamy sand</td>
<td>7.5</td>
<td>1.39</td>
<td>0.81</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Cerignola (FG)</td>
<td>120</td>
<td>October 1996</td>
<td>Field</td>
<td>Silt loam</td>
<td>7.4</td>
<td>2.54</td>
<td>1.48</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Grassano (MT)</td>
<td>300</td>
<td>October 1996</td>
<td>Woodland</td>
<td>Clay</td>
<td>7.5</td>
<td>1.40</td>
<td>0.81</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Matera (MT)</td>
<td>400</td>
<td>September 1996</td>
<td>Woodland</td>
<td>Clay</td>
<td>8.0</td>
<td>1.43</td>
<td>0.81</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Salandra (MT)</td>
<td>300</td>
<td>October 1996</td>
<td>Uncultivated land</td>
<td>Silt loam</td>
<td>7.7</td>
<td>1.32</td>
<td>0.77</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Margherita di Savoia (FG)</td>
<td>30</td>
<td>October 1996</td>
<td>Salt pan</td>
<td>Silt loam</td>
<td>7.8</td>
<td>1.98</td>
<td>1.15</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Acquaviva delle Fonti (BA)</td>
<td>350</td>
<td>October 1996</td>
<td>Field</td>
<td>Silt loam</td>
<td>7.1</td>
<td>3.79</td>
<td>2.20</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Lucera (FG)</td>
<td>70</td>
<td>October 1996</td>
<td>Uncultivated land</td>
<td>Clay</td>
<td>7.9</td>
<td>2.94</td>
<td>1.71</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Alatamara (BA)</td>
<td>475</td>
<td>October 1996</td>
<td>Uncultivated land</td>
<td>Silt loam</td>
<td>8.0</td>
<td>4.94</td>
<td>2.87</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Margherita di Savoia (FG)</td>
<td>30</td>
<td>October 1996</td>
<td>Uncultivated land</td>
<td>Sand</td>
<td>7.9</td>
<td>2.30</td>
<td>1.34</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Margherita di Savoia (FG)</td>
<td>30</td>
<td>October 1996</td>
<td>Uncultivated land</td>
<td>Sand</td>
<td>7.9</td>
<td>2.30</td>
<td>1.34</td>
</tr>
<tr>
<td>Metarhizium anisopliae</td>
<td>Castellaneta (TA)</td>
<td>50</td>
<td>September 1996</td>
<td>Field</td>
<td>Clay</td>
<td>7.4</td>
<td>2.03</td>
<td>1.18</td>
</tr>
<tr>
<td>Paecilomyces lilacinus</td>
<td>Minervino Murge (BA)</td>
<td>450</td>
<td>October 1996</td>
<td>Field</td>
<td>Silt loam</td>
<td>7.8</td>
<td>3.85</td>
<td>2.24</td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>Bitonto (BA)</td>
<td>120</td>
<td>September 1996</td>
<td>Orchard</td>
<td>Sand</td>
<td>7.5</td>
<td>1.81</td>
<td>1.05</td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>Margherita di Savoia (FG)</td>
<td>30</td>
<td>October 1996</td>
<td>Uncultivated land</td>
<td>Sand</td>
<td>7.9</td>
<td>2.30</td>
<td>1.34</td>
</tr>
<tr>
<td>Aspergillus tamari</td>
<td>Castellaneta (TA)</td>
<td>0</td>
<td>September 1996</td>
<td>Sea coast</td>
<td>Sand</td>
<td>7.4</td>
<td>3.47</td>
<td>2.02</td>
</tr>
<tr>
<td>Fusarium solani</td>
<td>Matera (MT)</td>
<td>400</td>
<td>September 1996</td>
<td>Orchard</td>
<td>Loamy sand</td>
<td>7.9</td>
<td>2.12</td>
<td>1.23</td>
</tr>
<tr>
<td>Fusarium solani</td>
<td>Matera (MT)</td>
<td>400</td>
<td>September 1996</td>
<td>Orchard</td>
<td>Loamy sand</td>
<td>7.9</td>
<td>2.12</td>
<td>1.23</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>Gravina (BA)</td>
<td>350</td>
<td>September 1996</td>
<td>Field</td>
<td>Clay</td>
<td>7.6</td>
<td>1.35</td>
<td>0.77</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>Gravina (BA)</td>
<td>350</td>
<td>September 1996</td>
<td>Field</td>
<td>Clay</td>
<td>7.6</td>
<td>1.35</td>
<td>0.77</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>Rapolla (PZ)</td>
<td>540</td>
<td>October 1996</td>
<td>Orchard</td>
<td>Loamy sand</td>
<td>7.6</td>
<td>2.01</td>
<td>1.17</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>Picciano (MT)</td>
<td>400</td>
<td>September 1996</td>
<td>Woodland</td>
<td>Loamy sand</td>
<td>7.6</td>
<td>1.58</td>
<td>0.92</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>Altamura (BA)</td>
<td>475</td>
<td>October 1996</td>
<td>Uncultivated land</td>
<td>Silt loam</td>
<td>8.0</td>
<td>4.94</td>
<td>2.87</td>
</tr>
<tr>
<td>Penicillium sp.</td>
<td>Margherita di Savoia (FG)</td>
<td>30</td>
<td>October 1996</td>
<td>Uncultivated land</td>
<td>Sand</td>
<td>7.9</td>
<td>2.30</td>
<td>1.34</td>
</tr>
<tr>
<td>Gliocladium roseum</td>
<td>Minervino Murge (BA)</td>
<td>450</td>
<td>October 1996</td>
<td>Field</td>
<td>Silt loam</td>
<td>7.8</td>
<td>3.85</td>
<td>2.24</td>
</tr>
</tbody>
</table>
Fungi were collected from 16 of 63 locations (25.9%, fig. 3) and the isolation succeeded in September-October 1996 while soil samples were taken from September 1996 to March 1997.

Fungi were found to be distributed from 0 to 540 m a.s.l. and were collected in all habitats. The pH ranged between 7.1 and 8.0 and organic content between 1.32 and 4.94%.

The frequency for the occurrence of fungal species in the different biotopes was as follows: 35.7% in uncultivated land, 21.4% orchard, 25% field, 10.7% woodland, 3.5% sea coast and 3.5% salt pan. No fungi were found in grasslands (fig. 4).

Three entomopathogenic species, *B. bassiana*, *M. anisopliae* and *Paecilomyces lilacinus* (Thom) Samson were isolated in little more than the half of positive samples, *B. bassiana* being the most numerous (isolated from 14 sites, 7.5%, the half of positive samples). Other fungi were isolated, among them several *Fusarium* strains - *F. oxysporum* Schlechtend, *F. solani* (Mart.) Saccardo and *Fusarium* sp., 3 *Aspergillus* strains (2 *A. flavus* Link and 1 *A. tamari* Kita), 1 *Penicillium* sp. and 1 *Gliocladium roseum* Bainier. They are common in soils and have no entomopathogenic potential. A few of the strains were morphologically atypic, which explains why in some cases the identification at the species level was not achieved (sp).

B. bassiana was isolated from soil under orchards, uncultivated lands, fields, woodlands and salt pans. This entomopathogen was most commonly isolated from loam soils (loamy sand and silt loam soils) rather than from
sandy or clay soils. Furthermore *B. bassiana* occurred in soils with different pH (ranging from 7.1 to 8.0) and organic content (ranging from 1.32 to 4.94). *B. bassiana* was isolated once in a soil of salt pan border where the presence of Cl\(^-\) was 3,550 mg/100 g while it was 0.25 mg/g in uncultivated land 0.04 mg/g in woodland and 0.09 mg/g in sandy beach.

M. anisopliae was only found once in a maize field with clay soil, as the less known *P. lilacinus*, found in a wheat field with silt loam soil.

Simultaneous presence of a fungus and an insect parasitic nematode was observed in 2 cases, in different larvae of the same sample: from salt pan border, near Margherita di Savoia, we collected *B. bassiana* and *Steinernema anomalii* (Kozodoi, 1984), and from maize field, near Castellaneta Marina, we collected *M. anisopliae* and *Heterorhabditis bacteriophora* Poinar, 1976. In both cases there was no antagonism between the pathogens but each one developed on different larvae.

No simultaneous presence of 2 fungal species was observed.

DISCUSSION

Owing to the “insect bait method”, the occurrence of entomopathogenic fungi in soils in Southern Italy was demonstrated for the first time. Our results...
showed clearly the ability of entomopathogenic fungi to survive in conditions (high temperatures, dryness) which are not generally considered as suitable for fungi.

Entomopathogenic fungi are known in Italy only from observations on cadavers or insects showing obvious signs of disease (Arzone & Ozino-Marletto, 1984; Ozino, 1989; Nanni et al., 1988; Pelagatti et al., 1988, 1993; Triggiani, 1984; Triggiani, 1986; Triggiani & Lipa, 1989; Triggiani, 1992/93; Triggiani et al., 1992/93) except for one report about the occurrence of Beauveria brongniartii (Sacc.) Petch, an efficient natural control agent of Melolontha melolontha L. (Coleoptera: Scarabaeidae), in the soil of Valle d’Aosta, Northwest Italy (Cravanzola et al., 1996).

In Southern Italian soils, B. bassiana appeared as the most common species, suggesting that it is favoured by soil and, especially, climatic conditions. M. anisopliae and P. lilacinus were found more rarely. This is the first time that P. lilacinus was isolated from soils using “insect bait method”. The situation in soils from Southern Italy appeared therefore different from that observed in Northern Europe. In Germany M. anisopliae appeared more abundant (Kleespies et al., 1989). This species, toghether with B. bassiana and Paecilomyces farinosus (Dickson & Fries) Brown & Smith, were isolated at about the same frequency in Finland (Vanninen et al., 1989). M. anisopliae and Paecilomyces fumosoroseus (Wize) Brown & Smith were the dominant species in Polish soils (Mietkiewski et al., 1991, 1999/92, 1995, 1996).

The three entomopathogenic species found in soils in Southern Italy, especially B. bassiana, are potential natural enemies of local soil insects or local insects which have in soil at least a developmental stage. They, therefore, deserve further investigations.

In our study we observed that B. bassiana was most commonly isolated from loam soils than sandy or clay soils and that the soil type may affect the distribution of the fungal species within a particular locality, but occurrence was not correlated to soil pH or organic content. These data agree with the results obtained in Finland by Vanninen et al. (1989): B. bassiana and P. farinosus were most common from loam soils while M. anisopliae was most commonly isolated from clay soils, although occurrence was not correlated to soil pH, conductivity or organic content. According to Polish studies, M. anisopliae as well as P. fumosoroseus seemed to dominate in sandy soils (Mietkiewski et al., 1991, 1999/92; Mietkiewski & Mietkiewska, 1993; Mietkiewski & Kolczarek, 1995; Tkaczuk & Mietkiewski, 1996).

In Tasmania, Rath et al. (1992) observed that M. anisopliae was more common from loam soils than from clay but occurrence was not related to pH,
conductivity, moisture, rainfall, altitude or temperature.

As for the possible influence of the type of crop, further studies are needed. However, in a locality of Bulgaria, Miętkiewski and Ignatowicz (1995) demonstrated that *M. anisopliae* was the dominant entomopathogenic species in sugar beet soil, whereas *P. fumosoroseus* dominated in corn soil.

In Germany Kleespies *et al.* (1989) investigated on the natural occurrence of entomopathogenic fungi and nematodes in Darmstadt area, and observed clear differences among different biotopes; they isolated more fungi and nematodes in the soil samples of organic fields and orchards. Regarding the association between habitat and *B. bassiana* occurrence, we found this pathogen most commonly in uncultivated land (wild vegetation) than in the other biotopes.

Extremely interesting is the presence of *B. bassiana* in the soil of salt pan borders with 3,550 mg of Cl⁻/100 g of soil.

Survival characteristics, temperature requirements, etc. of the strains isolated in Southern Italy should be compared to strains originated from ecoclimatically different regions. More precisely, the strains of *B. bassiana* should be compared to strains which, in northern part of the country, are studied due to their potential in the control of larvae of *Parectopa robiniella* Clemens (Lepidoptera: Gracillariidae) (Ozino *et al.*, 1990).

More generally, these strains could be compared to strains of other species studied in Italian conditions, i.e. *Verticillium lecanii* (Zimmermann) Viégas isolated from cadavers of *Ziginydia pullula* Boh. (Homoptera: Auchenorrhyncha: Typhlocybinae) (Ozino & Zeppa, 1989) and *B. brongnartii* isolated from dead larvae of *M. melolontha* (Piaatti *et al.*, 1995; Cravanzola *et al.*, 1996).

RIASSUNTO

FUNGHI ENTOMOPATOGENI NEI TERRENI DELL’ITALIA MERIDIONALE

REFERENCES

